SYNTHESIS AND MECHANISM OF FORMATION OF 2-HALOBENZOCYCLOPROPENES FROM TETRAHALOBICYCLO(4.1.0)HEPTANES

A. Kumar, S. R. Tayal and D. Devaprabhakara*

Department of Chemistry Indian Institute of Technology, Kanpur-208016, India

(Received in UK 26 January 1976; accepted for publication 5 February 1976)

Although a study on the synthesis and mechanism of formation of strained benzocyclopropene 1,2 from 7,7-dichlorobicyclo(4.1.0)hept-3-ene has been reported, 2- or 3-halobenzocyclopropene is unknown. We now wish to report here the first synthesis of 2-chlorobenzocyclopropene ($\underline{2}$), and the mechanistic study of its formation from 3,4,7,7-tetrachlorobicyclo(4.1.0)heptane ($\underline{1}$).

Treatment of 1 with a four fold excess of chilled solution of t-BuOK in DMSO for one hr and purification by high vacuum distillation gave 2 in ca. 50% yield (purity>95% by GLC). The structural assignment of 2 was based on its elemental analyses and spectral properties: Anal. Calcd for C₇H₅Cl: C, 67.47; H, 4.01. Found: C, 67.45; H, 4.05; IR (neat): $\mathbf{\mathcal{V}}_{\text{max}}$ = 1680 (aromatic double bond), 830 and 740 (aromatic) cm⁻¹; UV (C₂H₅OH) λ_{max} = 242 (log & 3.27), 250 (log & 3.34), 258 (log & 3.38), 266 (log & 3.32) and 270 (log & 3.24) nm; NMR (CCl₄); 63.26 (s, 2H), 7.10 (dd, 1H), 7.14 (d, 1H) and 7.18 (d, 1H); and MS: m/e ions at 124 and 126 in the ratio 3:1. We have also synthesized and characterized 2-bromobenzocyclopropene⁵ from 3.4.7.7-tetrabromobicyclo(4.1.0)heptane.⁵

We suggest the mechanism shown in Scheme for the formation of $\underline{2}$ from $\underline{1}$. The driving force for the reaction may be the relief of strain gained by the formation of $\underline{5}$ which can give rise to $\underline{6}$ by 1,5-H shift. Under the reaction conditions, 6 can undergo ready dehydrochlorination \underline{via} 7 to form $\underline{2}$.

864 No. 11

Scheme

Scheme

$$Cl$$
 Cl
 Cl

Furthermore, a similar dehydrochlorination of 3,4,7-trichlorobicyclo(4.1.0)-heptane⁵ using <u>t</u>-BuOK gave benzocyclopropene.¹ In support of the proposed mechanism we carried out a control dehydrochlorination of 3,4,7-trichlorobicyclo(4.1.0) heptane which allowed us to isolate and characterize the intermediate 2-chloro-1,3,5-cycloheptatriene.⁶ In addition, the isolated intermediate on further treatment with the base provided benzocyclopropene¹ thereby confirming the proposed pathway of this interesting selective transformation.

At present the obvious synthetic utility of the new route for the synthesis of other 2-substituted benzocyclopropenes is being studied.

ACKNOWLEDGEMENT. One of us (A.K.) thanks the CSIR, New Delhi for a JRF.

REFERENCES

- 1. W. E. Billups, A. J. Blakeney and W. A. Chow, Chem. Commun., 1461 (1971).
- 2. J. Prestian and H. Gunther, Angew. Chem. Int. Ed. Engl., 13, 276 (1974).
- 3. B. Halton, Chem. Rev., 73, 111 (1973).
- 4. B. S. Farah and E. E. Gilbert, <u>J. Chem. Eng. Data</u>, <u>7</u>, 568 (1962).
- 5. All new compounds gave satisfactory microanalyses and expected spectral data.
- Identified by comparison of spectral data with those published by:
 B. Fohlisch and E. Heug, Chem. Ber., 104, 2324 (1971).